# The Crystal Structure of 2'-Chlorobiphenyl-4-carboxylic Acid

## BY H. H. SUTHERLAND

Physics Department, The University, Hull, England

(Received 26 September 1967 and in revised form 1 March 1968)

The crystal structure of 2'-chlorobiphenyl-4-carboxylic acid ( $C_{13}H_8O_2Cl$ ) has been determined from three-dimensional X-ray diffraction data. The crystals are monoclinic, space group  $P2_1/c$ , with unit-ccll dimensions a=3.94, b=35.81, c=7.61 Å,  $\beta=101^{\circ}6'$ . The structure, which consists of centrosymmetrical hydrogen-bonded dimers, was refined by block-diagonal least-squares refinement to a residual of 8% for the 1028 observed structure factors. The angle between the two phenyl rings and the angle between the carboxyl group and the phenyl ring to which it is attached were found to be  $48.9^{\circ}$  and  $5.6^{\circ}$  respectively.

#### Introduction

In recent investigations (Branch, Byron, Gray, Ibbotson & Worral, 1964) on the properties of materials exhibiting liquid crystalline properties it became obvious that accurate information regarding the structure in the solid phase of related materials was required. This paper describes the structure of the fourth of a series of related compounds being investigated by the author.

### Experimental

2'-Chlorobiphenyl-4-carboxylic acid was prepared by oxidizing 4-acetyl-2'-chlorobiphenyl with sodium hypobromite in 50% aqueous dioxan (Byron, Gray & Wilson, 1966). Slow evaporation from ethanol produced transparent, needle shaped crystals. The observed density at  $17^{\circ}$ C was measured by the method of flotation using aqueous cadmium n-dodecatungstaborate.

### Crystal data

 $C_{13}H_8O_2Cl, M = 232.7$ , monoclinic,

 $a = 3.94 \pm 0.01$ ,  $b = 35.81 \pm 0.02$ ,  $c = 7.61 \pm 0.01$  Å,  $\beta = 101^{\circ}6' \pm 5'$ , U = 1053.4 Å<sup>3</sup>,  $D_m = 1.47$  g.cm<sup>-3</sup>,  $D_c = 1.46$  g.cm<sup>-3</sup>, Z = 4, F(000) = 476, Cu Ka ( $\lambda = 1.5418$  Å), Mo Ka ( $\lambda = 0.7107$  Å). Absent spectra, 0k0 when k odd and h0l when l odd. Space group  $P2_1/c$  (No. 14).

In order to minimize absorption effects a needle crystal of approximately square cross section was chosen for intensity data collection about the *a* axis. Data for the 0kl, 1kl, 2kl, 3kl and hk0 zones were collected by the multiple film equi-inclination Weissenberg technique, using Cu  $K\alpha$  radiation. The hk0 zone intensity data were collected using a cube shape crystal cut from one of the needles.

Initially the intensities of the spots were estimated visually – only those on the extended side of the films on the upper levels being measured – corrected for Lorentz and polarization factors and the Phillips (1954) correction factor applied. The data were then brought to the same arbitrary scale and finally on to an approximate absolute scale by the method of Wilson (1942) applied to the 0kl zone. No correction for absorption was applied to the data. Subsequently all the intensities were remeasured on a Joyce Loebl Flying Spot Densitometer as a check on the instrument. These data did not require the Phillips (1954) correction factor.

### Determination and refinement of the structure

A trial structure was deduced from the 0kl and hk0 sharpened Patterson projections. A structure-factor calculation involving the full three-dimensional data gave a residual R = 0.40 where  $R = \Sigma ||F_0| - |F_c||/\Sigma |F_o|$ . The structure was refined by two cycles of three-dimensional electron density distribution and structure-factor calculations to a residual R = 0.23.

Two cycles of block-diagonal least squares applied to positional parameters and overall scale factor on an Elliot 803B computer using the block-diagonal leastsquares program of Daly, Stephens & Wheatley (1963) reduced the residual to R=0.18. The inclusion of individual isotropic thermal parameters in the refinement resulted in a residual of R=0.15.

At this stage the three-dimensional data collected by means of the Joyce Loebl Flying Spot Densitometer became available and it was decided to use this in the subsequent refinement. As a starting point the coordinates corresponding to the previous residual R=0.18were chosen. Three cycles of least-squares refinement on scale, coordinate and overall thermal parameters gave a residual of R=0.13. On including individual isotropic thermal parameters in the refinement a residual of R=0.11 was obtained. After three cycles incorporating anisotropic thermal parameters defined as

$$\exp\left[-2\pi^{2}(U_{11}h^{2}a^{*2}+U_{22}k^{2}b^{*2}+U_{33}l^{2}c^{*2}+2U_{23}klb^{*}c^{*}+2U_{31}lhc^{*}a^{*}+2U_{12}hka^{*}b^{*})\right];$$

(Cruickshank, Pilling, Bujosa, Lovell & Truter, 1961), a three-dimensional difference electron density distribution was calculated; this gave a clear indication of the approximate positions of all the hydrogen atoms.

| <b>ਸ਼</b> ੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x246802244680244680244680244680244680244680244678901123456789011234567890123456789012345678901123456789011234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587890123458789012345878901234587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 02834<br>1778<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977<br>1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| นนนนนนนนนนผลิตติดติดติดติดติดติดติดติดติดติดติดติดติ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 09999412155 • 291571252 • 2015713 • • 14 • 4 • 4 • 676552501377191 • 626402277 • 999 • 51 • 17 • 7518 • • • • 95 • 28 • • • 84371 • 12 • 7428 • 828 • 4470 • • 525175 • • 7273 • 11 • • 7518 • 828 • • • • 95994 • 15 • • 12 • 95994 • 15 • • 14 • • 57 • • 577 • 7518 • 12 • 14 • 4874 • 1722 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • 8282 • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

172 THE CRYSTAL STRUCTURE OF 2'-CHLOROBIPHENYL-4-CARBOXYLIC ACID

Table 1. The observed and calculated structure factorsUnobserved reflexions are denoted by an asterisk

| ×1819201220145542788001123014554789544447407471471471471471471471471471471471471471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 100-F0-<br>101 9 - 553<br>101 9 - 553<br>102 - 553  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| L1717777777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Table       |
| $ \begin{array}{c} 1 & (COR1.) \\ \\ \begin{array}{c} 1 & (k & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e 1 (cont.) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| $\begin{array}{c} 100 \\ \bullet \\ \bullet \\ 1554 \\ 425 \\ 554 \\ \bullet \\ 117 \\ 122 \\ 247 \\ 100 \\ 554 \\ 117 \\ 122 \\ 247 \\ 100 \\ 56 \\ 110 \\ 127 \\ 227 \\ 100 \\ 120 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\$ |             |

•

•

Table 1 (cont.)

|--|--|--|--|

¢

At this stage the refinement was transferred to the University of Leeds KDF9 using the program of Cruickshank & Smith (1966). During the subsequent block-diagonal least-squares refinement of positional, thermal and scale factors, the hydrogen atoms were fixed at distances of 1.08 Å for those attached to the phenyl rings and at 0.97 Å for that bonded to O(1). The weighting scheme

$$Vw = 1 / \left\{ 2|F_{\min}| + |F_o| + \frac{2|F_o|^2}{|F_{\max}|} + \frac{5|F_o|^3}{|F_{\max}|^2} \right\}^{\frac{1}{2}},$$

was employed, it being found necessary to include the  $F_o^3$  term in the expression to discriminate against the strongest reflexions. The refinement was concluded with a residual for the 1028 observed reflexions of R=0.08. A final three-dimensional electron density distribution and a difference electron density distribution were calculated.

The final structure factors are given in Table 1; those reflexions which were not observed in the region of reciprocal space examined, either from camera geometry or from being too weak to measure, are marked with an asterisk. Table 2 gives the heavy atom coor-

Table 2(*a*). The final coordinates with their e.s.d.'s (in parenthesis)

|       | X/a                  | Y/b        | Z/c                 |
|-------|----------------------|------------|---------------------|
| Cl    | -0.1980 (5)          | 0.2002 (1) | -0.0105(3)          |
| O(1)  | -1.4337 (16)         | 0.0046 (2) | -0.2697(8)          |
| O(2)  | -0·3709 (17)         | 0.0407 (2) | <i>−</i> 0·4782 (8) |
| C(1)  | 0.1600 (19)          | 0.1476 (2) | 0.2153 (10)         |
| C(2)  | 0.0661 (18)          | 0.1846 (2) | 0.1887 (10)         |
| C(3)  | 0.1616 (20)          | 0.2122 (2) | 0.3184 (12)         |
| C(4)  | 0.3714 (21)          | 0.2021 (2) | 0.4842 (12)         |
| C(5)  | 0.4606 (20)          | 0.1651 (2) | 0.5137 (11)         |
| C(6)  | 0.3552 (19)          | 0.1382 (2) | 0.3817 (10)         |
| C(7)  | 0.0579 (18)          | 0.1173 (2) | 0.0795 (10)         |
| C(8)  | -0·0729 (19)         | 0.0841 (2) | 0.1305 (10)         |
| C(9)  | -0.1858 (20)         | 0.0563 (2) | 0.0004 (11)         |
| C(10) | <i>−</i> 0·1494 (19) | 0.0616 (2) | -0·1771 (10)        |
| C(11) | 0.0061 (19)          | 0.0944 (2) | -0.2218(10)         |
| C(12) | 0.1106 (19)          | 0.1219 (2) | -0·0975 (11)        |
| C(13) | <i>−</i> 0·2957 (20) | 0.0346 (2) | -0·3180 (11)        |

 Table 2(b). Orthogonal coordinates for the heavy

 atoms with respect to the axes

| X' =  | $X+Z\cos\beta;$ | Y' = Y and $Z'$ | $=Z\sin\beta$ |
|-------|-----------------|-----------------|---------------|
|       | X'              | Y'              | Z'            |
| Cl    | -0.7646         | 7.1677          | -0.0783       |
| O(1)  | -1.3137         | 0.1644          | -2.0140       |
| O(2)  | - 0.3669        | 1.4585          | - 3.5709      |
| C(1)  | 0.3150          | 5.2870          | 1.6077        |
| C(2)  | -0.0159         | 6.6116          | 1.4087        |
| C(3)  | 0.1702          | 7.5985          | 2.3773        |
| C(4)  | 0.7541          | 7.2386          | 3.6159        |
| C(5)  | 1.0624          | 5.9119          | 3.8362        |
| C(6)  | 0.8401          | 4.9489          | 2.8502        |
| C(7)  | 0.1115          | 4.1987          | 0.5933        |
| C(8)  | -0.4786         | 3.0131          | 0.9743        |
| C(9)  | -0.7324         | 2.0143          | 0.0026        |
| C(10) | -0.3291         | 2.2066          | -1.3223       |
| C(11) | 0.3490          | 3.3815          | - 1.6565      |
| C(12) | 0.5784          | 4.3649          | -0.7280       |
| C(13) | - 0.6991        | 1.2390          | - 2.3748      |
|       |                 |                 |               |

dinates and Table 3 their thermal parameters. The hydrogen atom parameters are quoted in Table 4.

The arrangements of the molecules in the unit cell viewed along the *a* axis is shown in Fig. 1. All intermolecular contacts of less than 3.6 Å are given in Table 5; the bond lengths and angles together with some of the intramolecular non-bonded distances are in Table 6. The equations of the mean planes of the ring systems C(1)-C(6); C(1)-C(6) and chlorine; C(7)-C(12) and the group C(10), C(13), O(1) and O(2), calculated with respect to the orthogonal triad *a,b,c'*, where *c'* is perpendicular to the *a* and *b* crystal axes, are given in Table 7. The deviations of the atoms from these planes are also quoted. The angle between the carboxylic group and the phenyl ring C(7)-C(12) is  $5.6^{\circ}$  and the angle between the two phenyl rings  $48.9^{\circ}$ .

### Discussion

The angle of  $48.9^{\circ}$  between the two phenyl rings is in good agreement with the values of  $49.2^{\circ}$  and  $46.1^{\circ}$  for 4-acetyl-2'-chlorobiphenyl (Sutherland & Hoy, 1967a),

Table 3. Thermal parameters (Å<sup>2</sup>) for the heavy atoms

|                 | $U_{11}$ | $U_{22}$ | U33    | $2U_{23}$ | $2U_{31}$ | $2U_{12}$ |
|-----------------|----------|----------|--------|-----------|-----------|-----------|
| Cl              | 0.0482   | 0.0374   | 0.0461 | 0.0139    | 0.0187    | 0.0069    |
| O(1)            | 0.0701   | 0.0472   | 0.0357 | -0.0148   | 0.0154    | -0.0462   |
| O(2)            | 0.0837   | 0.0209   | 0.0313 | -0.0051   | 0.0306    | -0.0378   |
| $\mathbf{C}(1)$ | 0.0362   | 0.0419   | 0.0288 | -0.0246   | 0.0337    | -0.0212   |
| C(2)            | 0.0295   | 0.0385   | 0.0319 | - 0.0059  | 0.0167    | -0.0085   |
| C(3)            | 0.0382   | 0.0446   | 0.0463 | -0.0287   | 0.0267    | -0.0247   |
| C(4)            | 0.0419   | 0.0496   | 0.0467 | -0.0277   | 0.0259    | -0.0265   |
| C(5)            | 0.0363   | 0.0616   | 0.0373 | -0.0063   | 0.0335    | -0.0184   |
| C(6)            | 0.0391   | 0.0201   | 0.0221 | -0.0222   | 0.0125    | -0.0117   |
| C(7)            | 0.0256   | 0.0331   | 0.0366 | -0.0036   | 0.0139    | -0.0019   |
| C(8)            | 0.0456   | 0.0372   | 0.0185 | -0.0032   | 0.0254    | -0.0109   |
| C(9)            | 0.0412   | 0.0395   | 0.0381 | -0.0029   | 0.0263    | -0.0103   |
| C(10)           | 0.0433   | 0.0375   | 0.0200 | 0.0003    | 0.0196    | 0.0016    |
| C(11)           | 0.0378   | 0.0364   | 0.0233 | 0.0163    | 0.0211    | 0.0045    |
| C(12)           | 0.0367   | 0.0318   | 0.0327 | -0.0065   | 0.0254    | -0.0155   |
| C(13)           | 0.0430   | 0.0337   | 0.0371 | -0.0019   | 0.0060    | 0.0150    |

# Table 4. Coordinates of the hydrogen atoms

H(1) is attached to O(1) and the numbers of the remaining hydrogens correspond to that of the carbon atom to which they are attached.

|       | X/a    | Y/b    | Z/c    |
|-------|--------|--------|--------|
| H(1)  | -0.556 | -0.014 | -0.375 |
| H(3)  | 0.075  | 0.242  | 0.292  |
| H(4)  | 0.468  | 0.223  | 0.586  |
| H(5)  | 0.606  | 0.157  | 0.639  |
| H(6)  | 0.415  | 0.125  | 0.414  |
| H(8)  | -0.094 | 0.080  | 0.265  |
| H(9)  | -0.307 | 0.030  | 0.041  |
| H(11) | 0.035  | 0.098  | -0.359 |
| H(12) | 0.230  | 0.148  | -0.135 |

Table 5. Intermolecular distances between atoms less than 3.6 Å apart (excluding hydrogen atoms)

| i            | j     | equi-point<br>indication | $d_{ij}$ |
|--------------|-------|--------------------------|----------|
| <b>O</b> (1) | C(13) | 1 + x, y, z              | 3∙513 Å  |
| O(1)         | C(9)  | $1-x, \bar{y}, \bar{z}$  | 3.518    |
| C(2)         | Cl    | 1 + x, y, z              | 3.564    |
| C(4)         | C(3)  | 1 + x, y, z              | 3.595    |
| <b>C</b> (7) | C(8)  | 1 + x, y, z              | 3.574    |
| C(9)         | C(11) | 1 + x, y, z              | 3.577    |
| C(10)        | C(11) | 1 + x, y, z              | 3.483    |
| O(1)         | O(1)  | $1-x, \bar{y}, 1-z$      | 3.459    |
| O(1)         | C(13) | $1-x, \bar{y}, 1-z$      | 3.415    |
| O(1)         | O(2)  | $1-x, \bar{y}, 1-z$      | 2.610    |
| O(2)         | O(2)  | $1-x, \bar{y}, 1-z$      | 3.413    |
| O(2)         | C(13) | $1-x, \bar{y}, 1-z$      | 3.403    |
| O(2)         | C(8)  | x, y, 1+z                | 3.576    |
|              |       |                          |          |

and 2-chlorobiphenyl-4-carboxylic acid (Sutherland & Hoy, 1967b) respectively. The displacement of the chlorine atom from the phenyl ring C(1)-C(6) is -0.056 Å. This corresponds to the C(2)-Cl bond bend-



Fig. 1. The arrangement of the molecules in the unit cell viewed along the *a* axis. The symmetry code is as follows: I. *x*, *y*, *z*; II.  $\bar{x}-1$ ,  $\bar{y}$ ,  $\bar{z}-1$ ; III.  $\bar{x}$ ,  $\bar{y}$ ,  $\bar{z}$ ; IV. x+1, *y*, z+1; V. *x*,  $\frac{1}{2}-y$ ,  $\frac{1}{2}+z$ ; VI.  $\bar{x}-1$ ,  $\frac{1}{2}+y$ ,  $-\frac{1}{2}-z$ ; VII.  $\bar{x}$ ,  $\frac{1}{2}+y$ ,  $\frac{1}{2}-z$ ; VIII. x+1,  $\frac{1}{2}-y$ ,  $\frac{3}{2}+z$ .

Table 6. Bond lengths and bond angles with their estimated standard deviations (e.s.d.'s)

| ClC(2)<br>ClC(7)<br>ClC(12)<br>O(1)-C(9)<br>O(1)-C(10) | Length<br>1·755 Å<br>3·168<br>3·177<br>2·798<br>2·370 | e.s.d.<br>0.008 Å<br>0.008<br>0.008<br>0.010<br>0.010 | C(2) - C(3) C(3) - C(4) C(4) - C(5) C(5) - C(6) C(7) - C(8) | Length<br>1·395 Å<br>1·416<br>1·380<br>1·396<br>1·378 | e.s.d.<br>0·011 Å<br>0·012<br>0·012<br>0·011<br>0·011 |
|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| O(1)-C(13)<br>O(2) $C(10)$                             | 1.289                                                 | 0.010                                                 | C(7) - C(12)                                                | 1.411                                                 | 0.010                                                 |
| O(2) = C(10)<br>O(2) = C(11)                           | 2·370<br>2·806                                        | 0.010<br>0.010                                        | C(8) = C(9)<br>C(9) = C(10)                                 | 1·416<br>1·398                                        | 0.011<br>0.011                                        |
| O(2) - C(13)                                           | 1.261                                                 | 0.010                                                 | C(10) - C(11)                                               | 1.397                                                 | 0.011                                                 |
| C(1) = C(2)<br>C(1) = C(6)                             | 1.380                                                 | 0.010<br>0.011                                        | C(10)-C(13)<br>C(11)-C(12)                                  | 1·477<br>1·372                                        | 0.011                                                 |
| C(1) - C(7)                                            | 1.502                                                 | 0.010                                                 |                                                             | 1 572                                                 | 0.011                                                 |
| •                                                      | Angle                                                 | e.s.d.                                                |                                                             | Angle                                                 | e.s.d.                                                |
| Cl - C(2) - C(1)                                       | 121·9°                                                | 0.6°                                                  | C(2)—C(3)—C(4)                                              | 118.9°                                                | 0.8°                                                  |
| Cl - C(2) - C(3)                                       | 114.9                                                 | 0.6                                                   | C(3) - C(4) - C(5)                                          | 118.4                                                 | 0.8                                                   |
| O(1) - C(13) - O(2)                                    | 112.4                                                 | 0.7                                                   | C(4) - C(5) - C(6)                                          | 121.0                                                 | 0.8                                                   |
| C(1) = C(13) = C(10)                                   | 11/-8                                                 | 0.7                                                   | C(8) - C(7) - C(12)                                         | 120.1                                                 | 0.7                                                   |
| C(1) = C(1) = C(3)                                     | 124.5                                                 | 0.7                                                   | C(8) = C(9) = C(10)                                         | 120.1                                                 | 0.7                                                   |
| C(6) - C(1) - C(7)                                     | 118.6                                                 | 0.7                                                   | C(9) - C(10) - C(13)                                        | 120.9                                                 | 0.7                                                   |
| C(1) - C(6) - C(5)                                     | 121.6                                                 | 0.7                                                   | C(11)-C(10)-C(13)                                           | 120.1                                                 | 0.7                                                   |
| C(1) - C(7) - C(8)                                     | 119.7                                                 | 0.7                                                   | C(10) - C(11) - C(12)                                       | 121.5                                                 | 0.7                                                   |
| C(1) - C(7) - C(12)                                    | 120.2                                                 | 0.7                                                   |                                                             |                                                       |                                                       |

ing out of the plane of the benzene ring through an angle of  $1.8^{\circ}$ . A similar displacement was reported in *o*-chlorobenzoic acid by Ferguson & Sim (1961). The C(2)-Cl bond length of  $1.755 \pm 0.008$  is significantly longer than the value of  $1.70 \pm 0.01$  quoted in Volume III of *International Tables for X-ray Crystallography*. Values for the C-Cl bond length of: 1.753 Å in 2-chloro-5-nitrobenzoic acid (Ferguson & Sim, 1962); 1.737 Å in *o*-chlorobenzoic acid (Ferguson & Sim, 1961); 1.738 Å in 4-acetyl-2'-chlorobiphenyl (Sutherland & Hoy, 1967*a*), do not differ significantly from that obtained in the present determination.

The C(1)–C(7) bond length of  $1.502 \pm 0.010$  is similar to that of  $1.506 \pm 0.017$  Å for biphenyl (Hargreaves & Rizvi, 1962) and is not significantly different from the biphenyl bond lengths of  $1.487 \pm 0.010$  Å in 2-chlorobiphenyl-4-carboxylic acid,  $1.490 \pm 0.010$  Å in 4-acetyl-2'-chlorobiphenyl and  $1.479 \pm 0.010$  Å in 4 acetyl-2' fluorbiphenyl.

The exocyclic C(10)–C(13) bond in the structure under investigation was determined as  $1.477 \pm 0.011$  Å. This compares favourably with the value of  $1.482 \pm 0.010$  Å for 2-chlorobiphenyl-4-carboxylic acid.

Neither the C(1)-C(7) bond nor the C(10)-C(13)bond differ significantly from the theoretical value of 1.477 quoted by Dewar & Schmeising (1959) and Cruickshank & Sparks (1960) for the  $(sp^2)$  single bond length between trigonally linked carbon atoms.

Biphenyl in the solid phase is planar. The introduction of the chlorine atom in the 2' position causes a strain which results in the twisting of the two phenyl rings about the phenyl bond and the displacement of the chlorine out of the plane of the phenyl ring C(1)-C(6). As seen from Table 7, the carboxyl group is displaced from the plane of the ring C(7)-C(12) and also rotated about the C(10)-C(13) bond. It may be that there is a relayed steric effect similar to that observed by Ferguson & Sim (1962) in 2-chloro-5-nitrobenzoic acid. This effect is almost certainly present in 2-chlorobiphenyl-4-carboxylic acid where a rotation of  $7.9^{\circ}$  was observed.

The C(13)–O(1) bond of  $1.289 \pm 0.070$  Å and C(13)– O(2) bond of  $1.261 \pm 0.010$  Å are respectively shorter and longer than had been expected. The corresponding bonds in 2-chlorobiphenyl-4-carboxylic acid are  $1.315 \pm 0.010$  Å and  $1.205 \pm 0.010$  Å. In benzoic acid Sim, Robertson & Goodwin (1955) quote 1.29 Å and 1.24 Å for the corresponding bond lengths. The O–H···O bond of 2.61 Å, which is the shortest intermolecular distance, is similar to the values quoted for benzoic acid of 2.64 Å, o-chlorobenzoic acid of 2.63 Å and for 2-chlorobiphenyl-4-carboxylic acid of 2.62 Å.

The author wishes to thank Dr P.J. Wheatley of Monsanto Research S.A. for kindly providing the Least Squares and Fourier Programs for the Elliot 803B computer; Dr G. W. Gray for providing the crystals used in the investigations; and the S.R.C. for the provision of a grant to purchase the Joyce Loebl Flying Spot densitometer.

#### References

- BRANCH, S. G., BYRON, D. J., GRAY, G. W., IBBOTSON, A. & WORRALL, B. M. (1964). J. Chem. Soc. p. 3279.
- BYRON, D. J., GRAY, G. W. & WILSON, R. C. (1966). J. Chem. Soc. p. 840.
- CRUICKSHANK, D. W. J. & SMITH, J. G. F. (1966). IUC, World List of Crystallographic Computer Programs. 2nd ed. Program 3512.
- CRUICKSHANK, D. W. J., PILLING, D. E., BUJOSA, A., LOVELL, F. M. & TRUTER, M. R. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.

Table 7. Deviations of the atoms in Å from the planes

|                              |                                                                                  |                                                      | •                                                |                                              |                              |                                                          |     |
|------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|----------------------------------------------|------------------------------|----------------------------------------------------------|-----|
| (i)<br>(ii)<br>(iii)<br>(iv) | 0·9119 <i>X'</i><br>- 0·8808 <i>X'</i><br>0·9175 <i>X'</i><br>- 0·8724 <i>X'</i> | + 0·1706 Y<br>+ 0·4164 Y<br>+ 0·1665 Y<br>+ 0·4676 Y | -0.3733Z'<br>-0.2255Z'<br>-0.3612Z'<br>-0.1422Z' | = 0.5635<br>= 1.4848<br>= 0.5764<br>= 1.5121 | C(1)<br>C(7)<br>C(1)<br>C(10 | -C(6) and Cl<br>-C(12)<br>-C(6)<br>), C(13), O(1) and O( | (2) |
|                              |                                                                                  | (i)                                                  | (ii)                                             |                                              | (iii)                        | (iv)                                                     |     |
|                              | Cl                                                                               | -0.009                                               | Å                                                | -                                            | –0·056 Å                     |                                                          |     |
|                              | $\tilde{O}(1)$                                                                   |                                                      | 0.19                                             | 4 Å                                          |                              | −0.003 Å                                                 |     |
|                              | O(2)                                                                             |                                                      | 0.25                                             | 1                                            |                              | -0.002                                                   |     |
|                              | CÌÌ                                                                              | 0.026                                                | 0.07                                             | 7                                            | 0.012                        | 0.457                                                    |     |
|                              | $\hat{C}(2)$                                                                     | 0.024                                                |                                                  |                                              | 0.001                        |                                                          |     |
|                              | C(3)                                                                             | 0.001                                                |                                                  | -                                            | -0.014                       |                                                          |     |
|                              | C(4)                                                                             | 0.009                                                | 0.04                                             | 9                                            | 0.015                        | 0.700                                                    |     |
|                              | C(5)                                                                             | -0.018                                               |                                                  | -                                            | -0.003                       |                                                          |     |
|                              | Č(6)                                                                             | -0.017                                               |                                                  | -                                            | -0.011                       |                                                          |     |
|                              | C(7)                                                                             | 0.033                                                | 0.03                                             | 1 -                                          | <b>-0</b> ∙081               | 0.270                                                    |     |
|                              | C(8)                                                                             |                                                      | -0.02                                            | 8                                            |                              | 0.176                                                    |     |
|                              | C(9)                                                                             |                                                      | -0.00                                            | 2                                            |                              | 0.068                                                    |     |
|                              | C(10)                                                                            | -0.007                                               | 0.00                                             | 2 .                                          | -0.033                       | -0.005                                                   |     |
|                              | C(11)                                                                            |                                                      | -0.01                                            | 1                                            |                              | 0.000                                                    |     |
|                              | C(12)                                                                            |                                                      | -0.01                                            | 3                                            |                              | 0.128                                                    |     |
|                              | C(13)                                                                            | -0.103                                               | 0.18                                             | 2 -                                          | -0.154                       | 0.012                                                    |     |

CRUICKSHANK, D. W. J. & SPARKS, R. A. (1960). Proc. Roy. Soc. A 258, 270.

DALY, J. J., STEPHENS, F. S. & WHEATLEY, P. J. (1963). M.R.S.A. Final Report No. 52.

DEWAR, M. J. S. & SCHMEISING, H. N. (1959). Tetrahedron 5, 166.

FERGUSON, G. & SIM, G. A. (1961). Acta Cryst. 14, 1262.

FERGUSON, G. & SIM, G. A. (1962). J. Chem. Soc. p. 1768. HARGREAVES, R. & RIZVI, S. H. (1962). Acta Cryst. 15,

365.

SIM, G. A., ROBERTSON, J. M. & GOODWIN, T. H. (1955). Acta Cryst. 8, 157.

III. Birmingham: Kynoch Press.

PHILLIPS, D. C. (1954). Acta Cryst. 7, 746.

SUTHERLAND, H. H. & HOY, T. G. (1967*a*). To be published.

International Tables for X-ray Crystallography (1962). Vol.

SUTHERLAND, H. H. & Hoy, T. G. (1967 b). To be published.

- WILSON, A. J. C. (1942). Nature, Lond. 150, 151.
- Young, D. W., Tollin, P. & Sutherland, H. H. (1967). Acta Cryst. B24, 161.

Acta Cryst. (1969). B25, 178

# The Crystal Structure of β-Protactinium Pentabromide

## By D. Brown\*, T.J. Petcher<sup>†</sup> and A.J. Smith

Chemistry Department, The University, Sheffield S3 7HF, England

#### (Received 31 January 1968)

Protactinium pentabromide crystallizes in two distinct modifications. A three-dimensional structure analysis of the  $\beta$  form (final R=9.05%) shows it to be essentially isostructural with uranium pentachloride. The molecular Pa<sub>2</sub>Br<sub>10</sub> units are bis-octahedral with symmetric bromine bridging (in contrast to U<sub>2</sub>Cl<sub>10</sub>), and are formed by the protactinium atoms occupying one fifth of the octahedral holes of a close-packed bromine lattice. The monoclinic unit cell of  $\beta$ -PaBr<sub>5</sub> has a=8.385, b=11.205, c=8.950 Å and  $\beta=91.1^{\circ}$ . The structural relationship of  $\beta$ -PaBr<sub>5</sub> with other pentahalides and with other protactinium compounds is discussed.

### Introduction

Protactinium pentabromide, PaBr<sub>5</sub>, has previously been reported (Maddock, 1961) on the basis of X-ray powder diffraction data, to possess orthorhombic symmetry with the lattice parameters a=7.25, b=12.12c=9.13 Å. Recent work at A.E.R.E., Harwell (Brown 1966), again powder studies, indicated that PaBr<sub>5</sub> was possibly dimorphic but the powder results were not satisfactorily interpreted. The present single-crystal investigation was undertaken in an attempt to clarify this situation and in order to provide structural data on protactinium pentabromide to permit a comparison with the information then available for niobium pentachloride and pentabromide (Zalkin & Sands, 1958) and protactinium pentachloride (Dodge, Smith, Johnson & Elson, 1967).

## Experimental

Protactinium pentabromide was prepared as described previously (Brown & Jones, 1966), and purified by vacuum sublimation at 400°. The compound is highly sensitive to atmospheric moisture, and single

crystals were obtained by slow sublimation of small quantities (ca. 10  $\mu$ g) of the product sealed in evacuated thin-walled silica capillaries. Investigation of the resulting crystals confirmed the existence of two forms of this compound. Sublimation at approximately 400-410° resulted in the formation of  $\beta$ -PaBr<sub>5</sub> whereas at approximately 390-400° a low temperature modification,  $\alpha$ -PaBr<sub>5</sub>, was obtained. Capillaries invariably contained entirely one modification, not an equilibrium mixture, and complete transformation, e.g.  $\alpha \rightarrow \beta$ , could be achieved by varying the sublimation conditions. Although we have been able to obtain some preliminary results for  $\alpha$ -PaBr<sub>5</sub> this modification is more difficult to crystallize than  $\beta$ -PaBr<sub>5</sub> and crystals suitable for a full structure determination have not yet been prepared. Preliminary investigations indicate that  $\alpha$ -PaBr<sub>5</sub> possesses monoclinic symmetry with a = 12.69, b = 12.82, c = 9.92 Å;  $\beta = 108^{\circ}$ , the space group being  $P2_{1}/c.$ 

The results of oscillation, Weissenberg and precession studies have shown that  $\beta$ -PaBr<sub>5</sub> possesses monoclinic symmetry, space group  $P2_1/n$  with reflexions systematically absent for h0l with h+l=2n+1and 0k0 with k=2n+1. The unit-cell parameters are  $a=8\cdot385$ ,  $b=11\cdot205$ ,  $c=8\cdot950$  Å;  $\beta=91\cdot1^{\circ}$  (all with an accuracy of  $\pm 0.3\%$ ); the calculated density for four PaBr<sub>5</sub> molecules per unit cell is  $4\cdot98$  g.cm<sup>-3</sup>. The nonstandard setting of the space group,  $P2_1/n$ , rather than the standard  $P2_1/c$ , was chosen to bring out the

<sup>\*</sup> Present address: Chemistry Division, Building 220, A.E. R.E., Harwell, Didcot, Berks., England.

<sup>†</sup> Present address: Chemistry Department, University College, London, England.